Introduction to NVIDIA CUDA
Programming

2024 NSF CyberTraining Workshop
Jan. 8, 2024 — Jan. 19, 2024
Clarkson University

Note: The lecture slides are adapted from the tutorial of CUDA
programing from NVIDIA

GPU Microarchitecture Overview

1 GPU |
: SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster :
I SIMT SIMT SIMT SIMT | SIMT SIMT [
: Core Core Core Core Core Core |

|
| 1

Clarkson

UNIVERSITY
defy conventi

Inside a SIMT Core
Done gWarg ID)

SIMT Reg
Front End [Fije] SIMD Datapath
¢ y
Schedule Memory Subsystem o] lont
[Branch || |[SMem|[L1 D$||Tex $||Const$ Network

* Fine-grained multithreading
= [nterleave warp execution to hide latency
= Register values of all threads stays in core

Clarkson

UNIVERSITY
defy convent

Nvidia Pascal GP100 GPU

Architecture

= 15.3 B Transistors @1.4 GHz clock
speed

= Up to 60 “SM” units

= 32 “cuda cores” each

= Upto 5.7 TFlop/s peak
= 4 MB L2 Cache

= 4096-bit HBM2

= MemBW ~ 732 GB/s
(theoretical)

= MemBW ~ 510 GB/s
(measured)

Clarkson

UNIVERSITY
defy conventi

GPU vs. CP

GPU vs. CPU Control ALU ALU
= Both are shared ALU ALU

memory based arch.
= light speed estimate _
(per device)

MemBW - 5-10x -

Peak ~ 6-15x CPU GPU
2x Intel Xeon E5- Intel Xeon Phi 7250 | NVidia Tesla P100
2697v4 “Broadwell” “Knights Landing” “Pascal”
Cores@Clock 2x18 @ =22.3 GHz 68 @ 1.4 GHz 56 SMs @ ~1.3 GHz
SP Performance/core 273.6 GFlop/s 89.6 GFlop/s ~166 GFlop/s
Threads@STREAM ~12 ~60 >25000
SP peak 22.6 TFlop/s 6.1 TFlop/s ~9.3 TFlop/s
Stream BW (meas.) 2x62.5 GB/s 450 GB/s (HBM) 510 GB/s
Transistors / TDP ~2x7 Billion / 2x145 W 8 Billion / 215W 14 Billion/300W

Clarkson

UNIVERSITY
defy conventi

What is CUDA?

= CUDA Architecture

= Expose GPU parallelism for general-purpose computing
= Boost performance

= CUDAC/C++

= Based on industry-standard C/C++
= Small set of extensions to enable parallel programming
= Straightforward APIls to manage devices, memory etc.

= This session introduces CUDA C

Note: this lecture is adapted from the NVIDIA training course

Clarkson

UNIVERSITY
defy conventi

Introduction to CUDA C

= What will you learn in this session?
= Start from “Hello World!”
= Write and launch CUDA C kernels
= Manage GPU memory
= Manage communication and synchronization

Clarkson

Part |I: Heterogenous Computing

HELLO WORLD!

CONCEPTS

__syncthreads()

Asynchronous operation
Handling errors
Managing devices

Clarkson

UNIVERSITY
defy convent

Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Host Device

Clarkson

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

Hdefine N 1024
#define RADIUS 3
‘#define BLOCK_ SIZE 16

@

__global_ void stencil_fd(int *i, int *out) { 3
shared_ int temp[BLOCK_SIZE + 2 * RADIUS]

int gindox = headigxx - Hockldcx bookDim ;.
int index = threadidx + RADIUS;

Read input elements into shared memory
tempflindex] = infgindex];

i (hreadidr x < RADIUS) |
temp{iindex - RADIUS] = nfgindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

Synchronize (ensure all the data is available)
_ syncihreads(); - p a ra e n

i Apply the stencil
intresult = 0;
for (nt offset

result

RADIUS ; offset <= RADIUS ; offset++)
temp[lindex + offset];

i Store the result
outfgindex] = result;

void il ints(int *x, it) {
fil_n(x, n, 1);

} J
int main(void) {
in, “out; /1 host copies of a, b, ¢
int*din,*d_out; I/ device copies of a, b, ¢
int size = (N + 2'RADIUS) * sizeolf(int); -

Alloc space for host copies and setup values
(ot aloc(sze) i st N+ ZRADIUS)
(it “ymalloc(size}; filLints(out, N + 2'RADIUS);

I Alloc space for device copies
cudaMalioc((void **)8d_in, size);

daMalloc((void *&d_out, sze); 4
O - serial code

in, in, size,
o, out, size,

1l Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

@

i Copy result back o host
d_out, size,

— | parallel code

cuaFree(d i) cudaFree(d_ou);

- serial code

Clarkson

Simple Processing Flow

1. Copy input data from CPU
memory to GPU memory

1. Copy input data from CPU
memory to GPU memory
2. Load GPU program and execute

Simple Processing Flow

1. Copy input data from CPU
memory to GPU memory

Load GPU program and execute
Copy results from GPU memory to L2
CPU memory

w N

DRAM

Hello World!

int main(void) {
printf ("Hello World!'\n");
return O;

} Output:
Standard C that runs on the host oIS
hello world.cu
$./a.out
NVIDIA compiler (nvcc) can be used to Hello World!
compile programs with no device code $

Clarkson

UNIVERSITY
defy conventi

Hello World! with Device Code

__global void mykernel (void) ({
}

int main(void) {
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n");

return 0;

}

= Two new syntactic elements...

Clarkson

UNIVERSITY
defy conventi

Hello World! with Device Code

void mykernel (void) ({

}

= CUDA C/C++ keyword indicates a function that:
= Runs on the device
= |s called from host code

= nvcc Separates source code into host and device components
s Device functions (e.g. mykerne1()) processed by NVIDIA compiler

= Host functions (e.g. main()) processed by standard host compiler
"= e.g., gcc

Clarkson

UNIVERSITY
defy conventi

Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host code to
device code

= Also called a “kernel launch”
= We’'ll return to the parameters (1,1) in a moment

= That's all that is required to execute a function on the
GPU!

Clarkson

Hello World! with Device Code

__global void mykernel (void) {
}

int main(void) { Output:
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n"); ¢ RNVCC
return 0; hello.cu
$./a.out

Hello World!

 mykernel () does nothing, somewhat
anticlimactic!

Clarkson

Parallel Programming in CUDA C

« But wait... GPU computing is about M () —
massive parallelism!

 We need a more interesting
L
example... 9P -

« We’ll start by adding two integers
and build up to vector addition

Clarkson

Addition on the Device

= Asimple kernel to add two integers

__global void add(int *a, int *b, int *c) {
*c = *a + *b;

}

» As before qicva1 is a CUDA C keyword meaning
aad () Will execute on the device
aada() Will be called from the host

Clarkson

Addition on the Device
= Note that we use pointers for the variables
__global void add(int *a, int *b, int *c) ({

*c = *a + *b;

}

add() runs on the device, so 3, » and - must point to
device memory

= \We need to allocate memory on the GPU

Clarkson

Memory Management

= Host and device memory are separate entities
= Device pointers point to GPU memory . |
° Host pointers point to CPU memory g =&f

= Simple CUDA API for handling device memory

o cudaMalloc (), cudaFree (), cudaMemcpy ()
= Similar to the C equivalents malloc (), free (),
memcpy ()

Clarkson

Addition on the Device: ..

= Returning to our aqa() kernel

__global void add(int *a, int *b, int *c) ({
*c = *a + *b;

}

= |et's take a look at main()...

Addition on the Device: r.in(

int main(void) {
int a, b, c;
Tole el Ay Bl lo, wel @

int size = sizeof (int);

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

Clarkson

UNIVERSITY
defy conventi

Addition on the Device: r.in(

cudaMemcpy (d a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

add<<<1l,1>>>(d a, d b, d c);
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

cudaFree (d a); cudaFree(d b); cudaFree(d c);

return O;

Clarkson

UNIVERSITY
defy conventi

Part ll: Blocks

Moving to Parallel

= GPU computing is about massive parallelism
= So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

» |nstead of executing add () once, execute N times in parallel

Clarkson

UNIVERSITY
defy conventi

Vector Addition on the Device

= With aaa) running in parallel we can do vector addition

= Terminology: each parallel invocation of aqa() is referred
to as a block
= Each invocation can refer to its block index using biockrax.x

__global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

= By using siocxrax.x 10 index into the array, each block
handles a different index

Clarkson

UNIVERSITY
defy conventi

Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

= On the device, each block can execute in parallel:

Block 0 Block 1 Block 2 Block 3

c[0] = a[0] + b[O0]; c[l] = a[l] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Clarkson

UNIVERSITY
defy conventi

Vector Addition on the Device:

add ()

= Returning to our parallelized aaa() kernel

__global _ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

= |et's take a look at main()...

Clarkson

Vector Addition on the Device:

main ()
int main(void) {
int
int *d a, *d b, *d c;
int size = sizeof (int) ;

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

Clarkson

UNIVERSITY
defy conventi

Vector Addition on the Device:

main ()

cudaMemcpy (d_a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice) ;

add<<<1,1>>>(d a, d b, d c);

cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost) ;

cudaFree(d_a); cudaFree(d b); cudaFree(d c);

return O0;

Clarkson

UNIVERSITY
defy conventi

Review (1 of 2)

= Difference between host and device

o Host CPU
o Device GPU

= Using gq10pa1 to declare a function as device code
= Executes on the device
= Called from the host

= Passing parameters from host code to a device function

Clarkson

UNIVERSITY
defy conventi

Review (2 of 2)

» Basic device memory management
cudaMalloc ()

cudaMemcpy ()
cudaFree ()

= |[aunching parallel kernels
= Launch ~ copies of aad() With ada<<<n,1>>>(.);
s Use blockidx.x t0 access block index

Clarkson

UNIVERSITY
defy conventi

Part lll: Threads

CUDA Threads

Terminology: a block can be split into parallel
threads

Let's change add () to use parallel threads
instead of parallel blocks

__global void add(int *a, int *b, int *c) {
cl 1 = al 1 +b[1;
}

We uSe threadrdx.x instead of biockrax.x

Need to make one change in mainy)...

Clarkson

UNIVERSITY
defy conventi

Vector Addition Using Threads:

#define N 512 AEleb ()
int main(void) {

int *a, *b, *c;

int *d_a, *d b, *d c;

int size = N * sizeof(int);

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

a = (int *)malloc(size);
b = (int *)malloc(size) ;
c = (int *)malloc(size);

Clarkson

UNIVERSITY
defy conventi

Vector Addition Using Threads:

main ()

cudaMemcpy (d_a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice) ;

add<<< >>>(d _a, d b, d c);
cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost) ;

free(a); free(b),; free(c);
cudaFree(d_a); cudaFree(d b); cudaFree(d c);

return O0;

Clarkson

UNIVERSITY
defy conventi

Part IV: Indexing

Combining Blocks and Threads

= \We've seen parallel vector addition using:

= Many blocks with one thread each
= One block with many threads

= Let's adapt vector addition to use both blocks and threads

= Why? We’'ll come to that...

= First let’s discuss data indexing...

Indexing Arrays with Blocks and
Threads

= No longer as simple as using biockiax.x and
threadIdx.x

Consider indexing an array with one element per
thread (8 threads/block)

threadIdx.x threadIdx.x

‘ 012345670123456ﬂ

\ A
Y Y

blockIdx.x = 2 blockIdx.x = 3

= With M threads/block a unique index for each
thread is given by:

int index = threadldx.x + blockIdx.x * M;

Clarkson

Indexing Arrays: Example

= Which thread will operate on the red element?

[O 1121314|5|6]|7]|8]9|10]11 121314151617181920222324252627282930 ?]

threadIdx.x = 5

‘ 01234‘6701234567

. J

N
blockIdx.x = 2

int index = threadlIdx.x + blockIdx.x * M;
= 5 + 2 * 8;

Vector Addition with Blocks and
Threads

= Use the built-in variable biockpim.x for threads per
block

int index = threadIdx.x + blockIdx.x * blockDim.x;

= Combined version of add () to use parallel threads
and parallel blocks

__global void add(int *a, int *b, int *c) {
int index = threadldx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

= What changes need to be made in main()?

Clarkson

Addition with Blocks and
Threads: main ()

int main(void) {
int *a, *b, *c;
int *d_a, *d b, *d c;

int size = N * sizeof(int);

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

a = (int *)malloc(size);

o
|

(int *)malloc(size) ;
c = (int *)malloc(size) ;

Clarkson

UNIVERSITY
defy conventi

Addition with Blocks and
Threads: main ()

cudaMemcpy (d_a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_b, b, size, cudaMemcpyHostToDevice) ;

add<<< >>>(d _a, d b, d c);
cudaMemcpy (c, d_c, size, cudaMemcpyDeviceToHost) ;

free(a); free(b),; free(c);
cudaFree(d_a); cudaFree(d b); cudaFree(d c);

return O0;

Clarkson

UNIVERSITY
defy conventi

