
Introduction to Message 
Passing Interface (MPI) 

Programming
2024 NSF CyberTraining Workshop

Jan. 8, 2024 – Jan. 19, 2024
Clarkson University



Message Passing Paradigm
Distributed memory 
architecture:

Each process(or) can only 
access its dedicated address
space.
No global shared address 
space
Data exchange and 
communication between 
processes is done by 
explicitly passing messages 
through a communication 
network

Message passing library:
• Should be flexible, efficient and portable
• Hide communication hardware and software layers 
from application programmer



Message Passing Paradigm
§ Widely accepted standard in HPC / numerical simulation: Message Passing 
Interface (MPI)

§ Process based approach: All variables are local!

§ Data exchange between processes(a.k.a. tasks): Send/receive messages 
via MPI library calls

§ This is usually the most tedious but also the most flexible way of
parallelization

§ MPI is standard for explicit message passing today.
 



A Modern MPI Standard
§ MPI forum – defines MPI standard / library subroutine interfaces
§ Beginning: April 1992 – Before: vendor specific libraries
§ Latest standard: MPI 3.1 (2015) – MPI 4.0 under development

§ Members (approx. 60) of MPI standard forum
 § Application programmers
 § Research institutes & Computing centres
 § Manufacturers of supercomputers & software designers

§ Successful free implementation: MPICH, OpenMPI + many others +
vendor libraries (Intel, IBM, CRAY)
§ All documents and more pointers available at: www.forum.org/
§ MPI defines more than 500 subroutines – typically only 10-30 are used



Goals and Scope
§ PORTABILITY: Architecture and hardware independent code

§ FORTRAN, C & C++ Interface
§ Provides ´well-defined´and ´safe´data transfer
§ Enables development of parallel libraries
§ Support heterogeneous environment (e.g. clusters with heterogeneous
compute nodes)

§ 



Software Architecture
§ Operating system view:
 § parallel work done by
tasks/processes
§ Programmer’s view: Library
routines for
 § coordination
 § communication
 § synchronization
§ User’s view: MPI execution
environment provides
 § resource allocation (with the 
support from LSF, SLURM, 
openPBS, etc.)
 



Parallel Execution
§ Startup phase: MPI
 § launches tasks
 § establishes communication context   
(communicator) among all tasks
§ MPI Point-to-point data transfer:
 § usually between pairs of tasks
 § usually coordinated
 § may be blocking or non-blocking
§ MPI Collective communication:
 § between all tasks or a subgroup of tasks
 § barrier, reductions, scatter/gather
§ Shutdown by MPI

§ Tasks run throughout program
execution: All variables are local



MPI Functions
§ MPI consists of hundreds of functions
§ Most users will only use a handful small groups of them
§ All functions prefixed with MPI_
§ C functions return integer error

▫ MPI_SUCCESS if no error

Note: MPI functions will be illustrated in C adapted from ORNL training course



More Terminology
§ Communicator

▫ An object that represents a group of processes (a.k.a. tasks) than 
can communicate with each other

▫ MPI_Comm type
▫ Predefined communicator: MPI_COMM_WORLD

§ Rank
▫ Within a communicator each process is given a unique integer ID
▫ Ranks start at 0 and are incremented contiguously

§ Size
▫ The total number of ranks in a communicator



Basic Functions
int MPI_Init( int *argc, char ***argv )
§ argc

▫ Pointer to the number of arguments
§ argv

▫ Pointer to argument vector
§ Initializes MPI environment
§ Must be called before any other MPI call



Basic Functions
int MPI_Finalize( void )

§ Cleans up MPI environment
§ Calling MPI functions after MPI_Finalize is 

undefined



Basic Functions

int MPI_Comm_rank(MPI_Comm comm, int *rank)
§ comm is an MPI communicator

▫ Usually MPI_COMM_WORLD
§ rank 

▫ will be set to the rank of the calling process in the communicator 
of comm



Basic Functions

int MPI_Comm_size(MPI_Comm comm, int *size)
§ comm is an MPI communicator

▫ Usually MPI_COMM_WORLD
§ size 

▫ will be set to the number of ranks in the communicator comm



Hello MPI_COMM_WORLD
#include “stdio.h”
#include “mpi.h”

int main(int argc, char **argv)
{

int rank, size;
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(“Hello from rank %d of %d total \n”, rank, size);

MPI_Finalize();
return 0;

}



Hello MPI_COMM_WORLD
§ Compile

▫ mpicc wrapper used to link in libraries and includes
▫ Uses standard C compiler, such as gcc, under the 

hood

$ mpicc hello_mpi.c –o hello



Hello MPI_COMM_WORLD
§ Run

▫ mpirun –n # ./a.out launches # copies of a.out

$ mpirun –n 3 ./hello
Hello from rank 0 of 3 total
Hello from rank 2 of 3 total
Hello from rank 1 of 3 total



Hello MPI_COMM_WORLD
§ Run

▫ mpirun –n # ./a.out launches # copies of a.out

$ mpirun –n 3 ./hello
Hello from rank 0 of 3 total
Hello from rank 2 of 3 total
Hello from rank 1 of 3 total

Note the order



MPI_Datatype
§ Many MPI functions require a datatype

§ Built in types for all intrinsic C types
▫ MPI_INT, MPI_FLOAT, MPI_DOUBLE, …



Point to Point
§ Point to Point routines

▫ Involves two and only two processes
▫ One process explicitly initiates send operation
▫ One process explicitly initiates receive operation
▫ Several send/receive flavors available

§ Blocking/non-blocking
§ Combined send-receive

▫ Basis for more complicated messaging



Point to Point
int MPI_Send(void *buf, int count,

MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

buf
Initial address of send buffer

count
Number of elements to send

datatype
Datatype of each element in 
send buffer

dest
Rank of destination

tag
Integer tag used by receiver to 
identify message

comm
Communicator



Point to Point
int MPI_Recv(void *buf, int count,

MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status status) 

buf
Initial address of receive buffer

count
Maximum number of elements 
that can be received

datatype
Datatype of each element in 
receive buffer

       

source
Rank of source

tag
Integer tag used to identify 
message

comm
Communicator

status
Struct containing information 
on received message 



Point to Point: try 1
#include “mpi.h”
int main(int argc, char **argv)
{

int rank, other_rank, tag, send_buff, recv_buff;
MPI_Status status;
tag = 5;
send_buff = 10;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0)
other_rank = 1;

else
other_rank = 0;

MPI_Recv(&recv_buff, 1, MPI_INT, other_rank, tag, MPI_COMM_WORLD, &status);
MPI_Send(&send_buff, 1, MPI_INT, other_rank, tag, MPI_COMM_WORLD);

MPI_Finalize();
return 0;

}



Point to Point: try 1
§ Compile

$ mpicc dead.c –o lock

§ Run
$ mpirun –n 2 ./lock
…
…
…
deadlock



Deadlock
§ The problem

▫ Both processes (a.k.a. tasks) are waiting to receive a message
▫ Neither process ever sends a message
▫ Deadlock as both processes wait forever



Point to Point: Fix 1
#include “mpi.h”
int main(int argc, char **argv)
{

int rank, other_rank, recv_buff;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0){
other_rank = 1;
MPI_Recv(&recv_buff, 1, MPI_INT, other_rank, 5, MPI_COMM_WORLD, &status);
MPI_Send(&rank, 1, MPI_INT, other_rank, 5, MPI_COMM_WORLD);

} else {
other_rank = 0;
MPI_Send(&rank, 1, MPI_INT, other_rank, 5, MPI_COMM_WORLD);
MPI_Recv(&recv_buff, 1, MPI_INT, other_rank, 5, MPI_COMM_WORLD, &status);

}
MPI_Finalize();
return 0;

}



Non blocking P2P
§ Non blocking Point to Point functions

▫ Allow Send and Receive to not block on CPU
§ Return before buffers are safe to reuse

▫ Can be used to prevent deadlock situations
▫ Can be used to overlap communication and computation
▫ Calls prefixed with “I”, because they return immediately



Non blocking P2P
int MPI_Isend(void *buf, int count,

MPI_Datatype datatype, int dest,
int tag, MPI_Request request)

buf
Initial address of send buffer

count
Number of elements to send

datatype
Datatype of each element in 
send buffer

dest
Rank of destination

tag
Integer tag used by receiver to 
identify message

request
Object used to keep track of 
status of receive operation



Non blocking P2P
int MPI_Irecv(void *buf, int count,

MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request request) 

buf
Initial address of receive buffer

count
Maximum number of elements 
that can be received

datatype
Datatype of each element in 
receive buffer

       

source
Rank of source

tag
Integer tag used to identify 
message

comm
Communicator

request
Object used to keep track of 
status of receive operation



Non blocking P2P
int MPI_Wait(MPI_Request *request, MPI_Status *status)

§ request
▫ The request you want to wait to complete

§ status
▫ Status struct containing information on completed request

§ Will block until specified request operation is 
complete

§ MPI_Wait, or similar, must be called if request is 
used



Point to Point: Fix 2
#include “mpi.h”
int main(int argc, char **argv)
{

int rank, other_rank, recv_buff;
MPI_Request send_req, recv_req;
MPI_Status send_stat, recv_stat;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(rank==0) other_rank = 1;
else other_rank = 0;

MPI_Irecv(&recv_buff, 1, MPI_INT, other_rank, 5, MPI_COMM_WORLD, &recv_req);
MPI_Isend(&rank, 1, MPI_INT, other_rank, 5, MPI_COMM_WORLD, &send_req);

MPI_Wait(&recv_req, &recv_stat);
MPI_Wait(&send_req, &send_stat);

MPI_Finalize();
return 0;

}



Collectives
§ Collective routines

▫ Involves all processes in communicator
▫ All processes in communicator must participate
▫ Serve several purposes

§ Synchronization
§ Data movement
§ Reductions

▫ Several routines originate or terminate at a single process known 
as the “root”



Collectives
int MPI_Barrier( MPI_Comm comm )

§ Blocks process in comm until all process reach it
§ Used to synchronize processes in comm



Collectives
Broadcast

Root

Rank 0 Rank 1 Rank 2 Rank 3



Collectives
int MPI_Bcast(void *buf, int count,

MPI_Datatype datatype, int root,
MPI_Comm comm)

buf
Initial address of send buffer

count
Number of elements to send

datatype
Datatype of each element in 
send buffer

root
Rank of node that will 
broadcast buf 

comm
Communicator



Collectives
Scatter

Root
Root
Root
Root

Rank 0 Rank 1 Rank 2 Rank 3



Collectives
int MPI_Scatter(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf
int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)

sendbuf
Initial address of send buffer 
on root node

sendcount
Number of elements to send

sendtype
Datatype of each element in 
send buffer

recvbuf
Initial address of receive buffer 
on each node

recvcount
Number of elements in      
receive buffer

recvtype
Datatype of each element 
in receive buffer

root
Rank of node that will 
broadcast buf 

comm
Communicator



Collectives
Gather

Root
Root
Root
Root

Rank 0 Rank 1 Rank 2 Rank 3



Collectives

sendbuf
Initial address of send buffer 
on root node

sendcount
Number of elements to send

sendtype
Datatype of each element in 
send buffer

recvbuf
Initial address of receive buffer 
on each node

recvcount
Number of elements in      
receive buffer

recvtype
Datatype of each element 
in receive buffer

root
Rank of node that will 
broadcast buf 

comm
Communicator

int MPI_Gather(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf
int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)



Collectives
Reduce

Root

Rank 0 Rank 1 Rank 2 Rank 3+ + +
- - -
* * *



Collectives
int MPI_Reduce(const void *sendbuf, void *recvbuf

int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

sendbuf 
Initial address of send buffer

recvbuf
Buffer to receive reduced 
result on root rank

count
Number of elements in 
sendbuf

datatype
Datatype of each element in 
send buffer

op
Reduce operation (MPI_MAX, 
MPI_MIN, MPI_SUM, …)

root
Rank of node that will receive 
reduced value in recvbuf

comm
Communicator



Collectives: Example
#include “stdio.h”
#include “mpi.h”

int main(int argc, char **argv)
{

int rank, root, bcast_data;
root = 0;
if(rank == root)

bcast_data = 10; 

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Bcast(&bcast_data, 1, MPI_INT, root, MPI_COMM_WORLD);

printf("Rank %d has bcast_data = %d\n", rank, bcast_data);

MPI_Finalize();
return 0;

}

Bug here???



Collectives: Example
$ mpicc collectives.c –o coll
$ mpirun –n 4 ./coll
Rank 0 has bcast_data = 10
Rank 1 has bcast_data = 10
Rank 3 has bcast_data = 10
Rank 2 has bcast_data = 10



Submit an MPI Job
§ #!/bin/bash
§ #
§ #SBATCH --job-name=mpi_test
§ #SBATCH --output=output.txt
§ #
§ # Number of MPI tasks
§ #SBATCH -n 6
§ #
§ # Number of tasks per node
§ #SBATCH --tasks-per-node=2
§ #
§ # Runtime of this jobs is less then 12 hours.
§ #SBATCH --time=12:00:00
§ # request to run on general nodes not dev nodes
§ #SBATCH --partition=general
§ # 
§ mpirun -n 6 sleep 120
§ # End of submit file


