
HPC Performance &
Architectures

2024 NSF CyberTraining Workshop
Jan. 8, 2024 – Jan. 19, 2024

Clarkson University

Topics of this Lecture
• Performance Evaluation
• HPC Architectures
• Process vs. Thread

Performance
§ Determine which computer is best suited for a given (set of) application(s)?
 § Gaming PC or MacBook Pro?
 § Cluster or fat server? Fast CPU? Intel or AMD or GPU???
 § Which applications? Which input/data sets?
§ Validate impact of new optimization / implementation / parallelization strategy
and present to others
 § Results need to be interpreted and potentially reproduced by external people
 § Compare with other / previous work
 § Justify efficient usage of expensive resources
§ Determine capabilities for individual parts of the computer
 § Data transfer / IO / computational capabilities
 § Often required to guide optimization strategies

Performance - Metrics
§ Performance = WORK / TIME

§ “Pure” metrics – basic choices for “WORK”
 § MFlop/s: Millions of Floating Point Operations per Second

§ MFlop/s = Number of Floating Point Operations executed / 106 * TIME

§ MIPS: Millions of Instructions per Second
 § MIPS = Number of Instructions Executed / 106 * TIME

§ How to determine WORK, e.g. “Floating Point Operations”
 § Count them manually (high level code / algorithm)
 § Use CPUs event counter à e.g., LIKWID Toolkit (like likwid-perfscope on
Ubuntu)

Performance Optimization
§ “My vector update code runs at 2,000 MFlop/s on a 2GHz processor!
§ Great – isn’t it?
for(i=0; i<n; i++)
{

a[i]= 3.0*c0+c1*c2 +c3*c4*a[i] -d0 *a[i];
}
à #FLOP = 8 * n d0 = 3.0*c0+c1*c2; d1 = c3*c4-d0;

for(i=0; i<n; i++)
{
 a[i]= d0 + d1*a[i];
}
à #FLOP = 2* n + 5

#FLOP has been
reduce to only ¼!

à Define WORK carefully – independent of implementation issues

Performance – Metric Choice
§ Iterations: Total number of loop iterations performed: WORK = n iterations
à Performance metric: Iterations / s

§ Lattice Site/ Cell / Particle Updates: Often used for stencil codes or
Lattice Boltzmann fluid solvers: WORK = number of sites/cells/particles to be
updated/computed
à Performance metric: Cell updates / s

§ Physical simulation time: Often used in molecular dynamics codes:
WORK = Physical time (e.g. nanosenconds) a system is propagated
à Performance metric: nanoseconds / day

§ Complete problem solution: WORK: ”1” well defined problem
à Performance metric: 1 / s

Performance – Time
§ Simplest performance metric (“Bestseller”): 1 / TIME
 § Measures time to solution
 § Carefully specify the “problem” you solved!
 § Best metric thinkable, but not intuitive in all situations

§ Problem: Which TIME?
§ LINUX / UNIX command time :
yuliu@yuliu-server:~$ time sleep 30
real 0m30.003s
user 0m0.002s
sys 0m0.001s

real refers to actual elapsed time; user and sys refer to CPU
time used only by the process.

Performance – Time (Cont.)
§ Stay away from CPU time – it‘s evil!
§ Elapsed time (walltime) is the time you wait for your result!
§ Measuring walltime within code on UNIX (-like) systems
 § Use gettimeofday() to measure timestamps:

#include <sys/time.h>

double timestamp(void){
 struct timeval tp;
 gettimeofday(&tp, NULL);
 return((double)(tp.tv_sec + tp.tv_usec/1000000.0)); }

§ WALLTIME:= Difference of two timestamps!

Performance – Impact Factors
§ For a given code/problem performance may be influenced by many factors

§ For reproducibility of performance results all critical factors need to be reported!
§ Sensibility and stability analysis!
§ Statistics - fluctuations between runs

Topics of this Lecture
• Performance Evaluation
• HPC Architectures
• Process vs. Thread

§ Parallel Computing: A number of compute elements solve a problem in a
cooperative way
§ Parallel Computer: A number of compute elements connected such way
to do parallel computing for a large set of applications
§ Classification according to Flynn: SISD, MISD, SIMD, Multiple Instruction
Multiple Data (MIMD)

Parallel Computers

Parallel Computers - Classifications
Classification according to address space organization:

§ Shared-memory Architectures:
Cache-Coherent Single Address Space

§ Distributed-memory Architectures
No (Cache-Coherent) Single Address Space

§ Hybrid architectures containing both concepts are state-of-
the art

Shared-Memory Arch.
§ Shared memory computers provide
 § Single shared address space for all
 processors
 § All processors share the same view of the address
 space!

§ Two basic categories of shared memory systems
 § Uniform Memory Access (UMA):
 Memory is equally accessible to all processors with the same performance
(Bandwidth & Latency)

 § Cache-coherent Non Uniform Memory Access (ccNUMA): Memory is
physically distributed: Performance (Bandwidth & Latency) is different for local and
remote memory access

Shared-memory: UMA
§ UMA Architecture: switch/bus arbitrates memory access
 § Special protocol ensures cross-CPU cache data consistency
 § Flat memory – also known as “Symmetric Multi-Processor” (SMP)

Shared-memory: UMA/Bus
§ Worst case: bus system provides single bandwidth to
multiple processors
§ Only “one consumer” at a time can use the bus and access
memory at any one time – No need to provide for faster memory
§ Collisions occur frequently, causing one or more CPUs to wait
for “bus ready” (contention) à Saturation
§ Multi-core architectures: “consumer” is the L3 cache (due to L3
cache misses)

Shared Memory: UMA/Crossbar
§ Best case: memory crossbar switch provides
separate data path to memory for each CPU
 § Can saturate full memory bandwidth of every CPU
concurrently
 (à Bandwidth is “parallel” resource)
 § Contention only if same memory module/bank is
accessed by multiple CPUs

Shared-memory: UMA Nodes
§ Examples:
 § Intel/AMD Dual-/quad-/hexa-/octo-/…/22-core laptop/desktop/server
processor
 § IBM BlueGene series
 § NEC vector systems
 § NVIDIA GPUs
 § Intel Xeon Phi (KNC, KNL,…)
§ Advantages
 § Cache Coherence is "easy" to implement
 § Easy to optimize memory access
 § Incremental parallelization
§ Disadvantages
 § Memory bandwidth and price (!) often limit scalability
 (2 – 20 cores per UMA node)

Basic Computer Concept
§ Stored Program Computer”
concept (Turing 1936)

§ Similar designs on all
modern systems

Intel Xeon Phi CPU
(2010-2020)

Architecture
§ 8 B Transistors
§ Up to 1.5 GHz clock speed
§ Up to 36x2 cores (2D mesh)
§ 2x 512-bit SIMD units each core
§ 3.5 TFlop/s peak
§ 36 MiB L2 Cache
§ 16 GiB MCDRAM
§ Large DDR4 main memory
§ Built Tianhe-2 supercomputer

CPU Core

Multicore CPU

Shared
 L3 Cache

Instruction Execution
This is the primary resource of the processor. All efforts in hardware design are
targeted towards increasing the instruction throughput.

Instructions are the concept of “work” as seen by processor designers.
Not all instructions count as “work” as seen by application developers!

Example: Adding two arrays A(:) and B(:)

do i=1, N
 A(i) = A(i) + B(i)
enddo

Processor work:
LOAD r1 = A(i)
LOAD r2 = B(i)
ADD r1 = r1 + r2
STORE A(i) = r1
INCREMENT i
BRANCH à top if i<N

User work:
N Flops (ADDs)

Data Transfer
Data transfers are a consequence of instruction execution and therefore a
secondary resource. Maximum bandwidth is determined by the request rate
of executed instructions and technical limitations (bus width, speed).

Crucial question: What determines the runtime?
§ Data transfer?
§ Code execution?
§ Something else?

Example: Adding two arrays A(:) and B(:)

do i=1, N
 A(i) = A(i) + B(i)
enddo

Data transfers:
8 byte: LOAD r1 = A(i)
8 byte: LOAD r2 = B(i)
8 byte: STORE A(i) = r2
Sum: 24 byte

From Application to CPU
§ Application: High Level Programming
Language (e.g. C / C++ / Fortran) –
portable

§ Compiler translates program to
Instruction
set (architecture) (IA32, Intel 64, AMD64
a.k.a. x86, x86_64)

§ Hardware specific execution of
Instruction
Set Architecture (ISA)

DRAM Gap

Main memory
access speed not
sufficient to keep
CPU busy…

à Introduce fast on-
chip
caches, holding
copies of recently
used data items

Approx.
10 F/B

Solution - Memory Hierarchy

Topics of this Lecture
• Performance Evaluation
• HPC Architectures
• Process vs. Thread

Definitions: threads vs. processes
§ A process is a “program” with its own address space.

▫ A process has at least one thread!

§ A thread of execution is an independent sequential computational task
with its own control flow, stack, registers, etc.

▫ There can be many threads in the same process sharing the same
address space

Threads vs. Processes
Creation of a new process using fork is expensive (time &

memory).

A thread (sometimes called a lightweight process) does
not require lots of memory or startup time.

fork()

fork()

Process A

Global
Variables

Code

Stack

Process B

Global
Variables

Code

Stack

pthread_create()

Process A
Thread 1

Global
Variables

Code

Stack

Process A
Thread 2

Stack

pthread_create()

Threads in a Process

process
(shared) code

(shared) address space

program counter

st
ac
k

program counter

st
ac
k

program counter

st
ac
k

method f method g

global variable

